Computers (Aug 2024)

Self-Adaptive Evolutionary Info Variational Autoencoder

  • Toby A. Emm,
  • Yu Zhang

DOI
https://doi.org/10.3390/computers13080214
Journal volume & issue
Vol. 13, no. 8
p. 214

Abstract

Read online

With the advent of increasingly powerful machine learning algorithms and the ability to rapidly obtain accurate aerodynamic performance data, there has been a steady rise in the use of algorithms for automated aerodynamic design optimisation. However, long training times, high-dimensional design spaces and rapid geometry alteration pose barriers to this becoming an efficient and worthwhile process. The variational autoencoder (VAE) is a probabilistic generative model capable of learning a low-dimensional representation of high-dimensional input data. Despite their impressive power, VAEs suffer from several issues, resulting in poor model performance and limiting optimisation capability. Several approaches have been proposed in attempts to fix these issues. This study combines the approaches of loss function modification with evolutionary hyperparameter tuning, introducing a new self-adaptive evolutionary info variational autoencoder (SA-eInfoVAE). The proposed model is validated against previous models on the MNIST handwritten digits dataset, assessing the total model performance. The proposed model is then applied to an aircraft image dataset to assess the applicability and complications involved with complex datasets such as those used for aerodynamic design optimisation. The results obtained on the MNIST dataset show improved inference in conjunction with increased generative and reconstructive performance. This is validated through a thorough comparison against baseline models, including quantitative metrics reconstruction error, loss function calculation and disentanglement percentage. A number of qualitative image plots provide further comparison of the generative and reconstructive performance, as well as the strength of latent encodings. Furthermore, the results on the aircraft image dataset show the proposed model can produce high-quality reconstructions and latent encodings. The analysis suggests, given a high-quality dataset and optimal network structure, the proposed model is capable of outperforming the current VAE models, reducing the training time cost and improving the quality of automated aerodynamic design optimisation.

Keywords