Scientific Reports (Nov 2024)
Untargeted urine metabolomics suggests that ascorbic acid may serve as a promising biomarker for reduced feed intake in rabbits
Abstract
Abstract Feed restriction is a common nutritional practice in rabbit farming; however, decreased feed intake can also signal potential digestive disorders at an early stage. This study endeavors to investigate the impact of feed restriction on selected productive traits and the urinary metabolome of juvenile rabbits across diverse genetic backgrounds. Our objective is to identify potential biomarkers capable of detecting periods of fasting. A total of 48 growing rabbits were used from two genetic types: Prat line (selected for litter size at weaning, n = 24) and Caldes line (selected for post-weaning growth rate, n = 24). At 60 days of age, a digestibility trial was carried out. Changes in productive traits (through bioelectrical impedance analysis, live weight control, average daily gain, energy, and protein retention) were evaluated when the animals were fed ad libitum from 60 to 64 days of age and when the same animals were subjected to feed restriction (50% of maintenance energy requirements) from 70 to 74 days of age, in a split-plot trial. In addition, untargeted urine metabolomics analysis was performed at both periods (ad libitum vs. restricted). Although some differences between genetic lines were observed in the animals’ performance traits (average daily gain and retention of energy and protein), no differences in the urine metabolome were found between genetic types. However, feed restriction caused notable changes in the metabolome. When the animals were subjected to feed restriction, they had higher levels of ascorbic acid (P = 0.001) and p-cresol sulphate (P = 0.058) and lower levels of pyrocatechol sulphate/hydroquinone sulphate (P < 0.001), resorcinol sulphate (P = 0.002), enterolactone sulphate (P < 0.001), enterolactone (P < 0.001), kynurenic acid (P = 0.0002), proline betaine (P < 0.001), pipecolic acid betaine (P < 0.001), xanthurenic acid (P < 0.001) and quinaldic acid (P < 0.001) than the same animals when they were fed ad libitum. This study proposes urine ascorbic acid as potential biomarker for fasting events in rabbits. As urine ascorbic acid is the sole metabolite that significantly increases in the restricted group, it offers promising indicator for early detection and targeted management of digestive disorders in rabbits.
Keywords