Agronomy (Nov 2021)

Adaptability Mechanisms of Japonica Rice Based on the Comparative Temperature Conditions of Harbin and Qiqihar, Heilongjiang Province of Northeast China

  • Muhammad Shahbaz Farooq,
  • Amatus Gyilbag,
  • Ahmad Latif Virk,
  • Yinlong Xu

DOI
https://doi.org/10.3390/agronomy11112367
Journal volume & issue
Vol. 11, no. 11
p. 2367

Abstract

Read online

Japonica rice has been considerably impacted from climate change, mainly regarding temperature variations. Adjusting the crop management practices based on the assessment of adaptability mechanisms to take full advantage of climate resources during the growing season is an important technique for japonica rice adaptation to climate changed conditions. Research based on the adaptability mechanisms of japonica rice to temperature and other environmental variables has theoretical and practical significance to constitute a theoretical foundation for sustainable japonica rice production system. A contrived study was arranged with method of replacing time with space having four different japonica cultivars namely Longdao-18, Longdao-21, Longjing-21, and Suijing-18, and carried out in Harbin and Qiqihar during the years 2017–2019 to confer with the adaptability mechanisms in terms of growth, yield and quality. The formation of the grain-filling material for superior and inferior grains was mainly in the middle phase which shared nearly 60% of whole grain-filling process. Maximum yield was noticed in Longdao-18 at Harbin and Qiqihar which was 9500 and 13,250 kg/ha, respectively. The yield contributing components fertile tillers, number of grains per panicle, and 1000-grain weight were higher at Qiqihar; therefore, there was more potential to get higher yield. The data for grain-filling components demonstrated that the filling intensity and duration at Qiqihar was contributive to increase the grain yield, whereas the limiting agents to limit yield at Harbin were the dry weights of inferior grains. The varietal differences in duration and time of day of anthesis were small. Across all cultivars and both study sites, nearly 85% of the variation of the maximum time of anthesis could be justified with mean atmospheric temperature especially mean minimum temperature. Mean onset of anthesis was earliest in Longdao-21 at Harbin, whereas it was latest in Longdao-18 at Qiqihar. The maximum time to end anthesis and the longest duration of anthesis were taken by Longdao-18, i.e., 9.0 hasr and 4.2 h, respectively. Chalkiness and brown rice percentages were elevated at Qiqihar showing Harbin produced good quality rice. This study investigated the adaptability mechanisms of japonica rice under varying temperature conditions to distinguish the stress tolerance features for future sustainability and profitability in NEC. It was concluded that there is an adaptive value for anthesis especially regarding Tmin and, moreover, earlier transplantation may produce tall plants. The results demonstrated that high temperature at the onset of anthesis at the start of the day enhanced the escape from high temperature later during the day. Early transplantation is recommended in NEC because earlier anthesis during humid days rendered for potential escape from high ambient temperature later during that day. Temperature influenced japonica rice significantly and coherently, whereas the influence of growing season precipitation was not significant. Daily mean sunshine influenced the japonica rice significantly, but the impact was less spatially coherent. The results foregrounded the response of the japonica rice to external driving factors focusing climate, but ignored socioeconomic suggesting emphasis on both driving factors to target future research and render important insights into how japonica rice can adapt in mid-high-latitude regions.

Keywords