Animal Nutrition (Jun 2024)

Effects of fermented sweet potato residue on nutrient digestibility, meat quality, and intestinal microbes in broilers

  • Ting Yao,
  • Chenyu Wang,
  • Lifen Liang,
  • Xuan Xiang,
  • Hui Zhou,
  • Wentao Zhou,
  • Ruoxin Hou,
  • Tianli Wang,
  • Liuqin He,
  • Shiyu Bin,
  • Yulong Yin,
  • Tiejun Li

Journal volume & issue
Vol. 17
pp. 75 – 86

Abstract

Read online

This study aimed to investigate the effects of different proportions of dietary fermented sweet potato residue (FSPR) supplementation as a substitute for corn on the nutrient digestibility, meat quality, and intestinal microbes of yellow-feathered broilers. Experiment 1 (force-feeding) evaluated the nutrient composition and digestibility of mixtures with different proportions of sweet potato residue (70%, 80%, 90%, and 100%) before and after fermentation. In Experiment 2 (metabolic growth), a total of 420 one-day-old yellow-feathered broilers were randomly allocated to 4 groups and fed corn-soybean meal-based diets with 0, 5%, 8%, and 10% FSPR as a substitute for corn. The force-feeding and metabolic growth experiments were performed for 9 and 70 d, respectively. The treatment of 70% sweet potato residue (after fermentation) had the highest levels of crude protein, ether extract, and crude fiber and improved the digestibility of crude protein and amino acids (P < 0.05). Although dietary FSPR supplementation at different levels had no significant effect on growth performance and intestinal morphology, it improved slaughter rate, half-chamber rate, full clearance rate, and meat color, as well as reduced cooking loss in the breast and thigh muscles (P < 0.05). Dietary supplementation with 8% and 10% FSPR increased the serum immunoglobulin M and immunoglobulin G levels in broilers (P < 0.05). Furthermore, 10% FSPR increased the Shannon index and Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-010 and Romboutsia abundances and decreased Sutterella and Megamonas abundances (P < 0.05). Spearman's correlation analysis showed that meat color was positively correlated with Ruminococcaceae_UCG-014 (P < 0.05) and negatively correlated with Megamonas (P < 0.05). Collectively, 70% sweet potato residue (after fermentation) had the best nutritional value and nutrient digestibility. Dietary supplementation with 8% to 10% FSPR as a substitute for corn can improve the slaughter performance, meat quality, and intestinal microbe profiles of broilers. Our findings suggest that FSPR has the potential to be used as a substitute for corn-soybean meals to improve the meat quality and intestinal health of broilers.

Keywords