Foods (Mar 2023)

Effect of Thermal Processes on <i>S</i>-Allyl Cysteine Content in Black Garlic

  • Kanokwan Manoonphol,
  • Uthaiwan Suttisansanee,
  • Chadamas Promkum,
  • Chaniphun Butryee

DOI
https://doi.org/10.3390/foods12061227
Journal volume & issue
Vol. 12, no. 6
p. 1227

Abstract

Read online

As a key component of black garlic (BG) products, S-allyl cysteine (SAC) is useful in reducing oxidative stress and inflammation. Several BG products with a high SAC content have been developed by thermal processing; however, the optimum conditions for thermal treatment for producing Thai garlic (multicloves) with a high SAC content compared to Chinese garlic (single clove) are still unknown. Moreover, the mechanism underlying the increase in SAC content in BG is unclear. Thus, this study aimed to investigate the optimum thermal condition for developing Thai BG with high SAC content base on methods A (70 °C and 80% RH) and B (60–75 °C and 80–85% RH). The total phenolic contents and antioxidant activities of Thai fresh garlic, Thai BG, and their powder forms were also compared. Method A worked the best for both types of garlic. The results indicated that the SAC content increased significantly after 7 days of fermentation and decreased drastically afterward with prolonged heat treatment. The optimum thermal condition for producing Thai fresh garlic and Chinese fresh garlic with high SAC content was 70 °C and a relative humidity of 80% for 12 days in an industrial fermentation chamber. The SAC content of Thai BG and Chinese BG increased approximately 139- and 122-fold, respectively. Furthermore, significant antioxidant capabilities determined by ferric ion-reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and oxygen radical absorbance capacity assays were 34-, 6-, and 3-fold higher, respectively, than those of fresh garlic.

Keywords