Fractal and Fractional (May 2025)
Fractal–Fractional Synergy in Geo-Energy Systems: A Multiscale Framework for Stress Field Characterization and Fracture Network Evolution Modeling
Abstract
This research introduces an innovative fractal–fractional synergy framework for multiscale analysis of stress field dynamics in geo-energy systems. By integrating fractional calculus with multiscale fractal dimension analysis, we develop a coupled approach examining stress redistribution patterns across different geological scales. The methodology combines fractal characterization of rock mechanical parameters with fractional-order stress gradient modeling, validated through integrated analysis of core testing, well logging, and seismic inversion data. Our fractal–fractional operators enable simultaneous characterization of stress memory effects and scale-invariant fracture propagation patterns. Key insights reveal the following: (1) Non-monotonic variations in rock mechanical properties (fractal dimension D = 2.31–2.67) correlate with oil–water ratio changes, exhibiting fractional-order transitional behavior. (2) Critical stress thresholds (12.19–25 MPa) for fracture activation follow fractional power-law relationships with fracture orientation deviations. (3) Fracture network evolution demonstrates dual-scale dynamics—microscale tip propagation governed by fractional stress singularities (order α = 0.63–0.78) and macroscale expansion obeying fractal growth patterns (Hurst exponent H = 0.71 ± 0.05). (4) Multiscale modeling reveals anisotropic development with fractal dimension increasing by 18–22% during multi-well fracturing operations. The fractal–fractional formalism successfully resolves the stress-shadow paradox while quantifying water channeling risks through fractional connectivity metrics. This work establishes a novel paradigm for coupled geomechanical–fluid dynamics analysis in complex reservoir systems.
Keywords