Ciência e Agrotecnologia (Apr 2010)
Reatividade de escórias silicatadas da indústria siderúrgica Reactivity of silicate slags of the iron and steel industry
Abstract
As escórias siderúrgicas são usadas na agricultura, mas são poucos os trabalhos sobre sua reatividade. Neste trabalho, objetivou-se avaliar escórias siderúrgicas em diferentes frações granulométricas quanto à correção do pH e liberação de Ca, Mg e Si para o solo. O delineamento foi inteiramente casualizado com 4 repetições em esquema fatorial com 6 fontes (escória de alto-forno 1, escória de fosfato, escória de alto-forno 2, escória de aciaria de forno AOD, escória de aço inox e escória de forno LD) e 5 distribuições granulométricas (2 - 1,41; 1,41 - 0,85; 0,85 - 0,50; 0,50 - 0,30 mm e The slags are used in the agriculture as soil acidity correctives in same rates of lime, but there are few studies about its reactivity in soils. The objective was to compare slag reactivity to soil acidity correction and calcium, magnesium, and silicon liberation. A completely randomized experimental design was used, with 4 repetitions in factorial with 6 sources (blast furnace slag 1, phosphate slag, blast furnace slag 2, AOD furnace steel slag, stainless steel slag and LD furnace steel slag) and 5 particle sizes (2-1.41; 1.41-0.85; 0.85-0.50; 0.50-0.30 mm and < 0,30 mm) and two additional treatments (control and CaCO3). The CaCO3 was used as a pattern for the determination of the reactivity index of each source. All treatments received 1500 mg kg-1 of equivalent CaCO3 and each rate of slags was calculated by its determined neutralization power. The pH-value increased with reduction of particle size in all slags. The phosphate slag showed best efficiency on the liberation of Ca + Mg compared to the calcium carbonate in the granulometrics inferior to 0.5 mm. There was low efficiency in soil acidity correction and liberation of the Ca and Mg in soil to slag of blast furnace. It is necessary to use particles smaller than 0.3 mm to improve silicon availability of phosphate slag and particles between 0.85 and 1.41mm to stainless steel slag. The silicon availability of AOD furnace steel slag and LD furnace steel slag were not influenced by particle size.
Keywords