MATEC Web of Conferences (Jan 2017)
Magnetic properties of barium ferrite after milling by high energy milling (hem)
Abstract
Magnetic properties of barium ferrite that were mashed by High Energy Milling (HEM) has been characterized. The starting iron oxide powder (Fe2O3) and barium carbonate (BaCO3) were prepared by powder metallurgy technique by the stages of mixing, calcining, milling, compacting, and sintering. Weight ratio of Fe2O3: BaCO3 was 88.74 wt% : 17.52 wt%. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcining process. Milling by HEM was varied at 30, 60, 90, 120, and 150 minutes. The ball and container of HEM were made of stainless steel. Characterization micro structure by SEM showed that the milling time affect the grain size of the magnetic powder. The longer of milling time, the grain size was smaller and uniform. Characterization by using magnetic instrument Permagraph showed that the grain size will affect the magnetic properties of barium ferrite. Induction of remanence (Br), coercivity (HcJ), and product energy maximum (BHmax) values increased with increasing milling time. The optimal magnetic properties were obtained at the time of milling 120 minutes with value of Hc = 1.97 kG, HcJ = 2.314 kOe, and BHmax = 0.64 MGOe.