The Microbial Diversity and Flavor Metabolism Regulation of <i>Xiangzao</i> During Different Natural Fermentation Time Periods
Rongbin Zhang,
Shuangping Liu,
Tiantian Liu,
Rui Chang,
Guixiao Liu,
Mingliang Li,
Jian Mao
Affiliations
Rongbin Zhang
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Shuangping Liu
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Tiantian Liu
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Rui Chang
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Guixiao Liu
Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
Mingliang Li
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Jian Mao
National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Xiangzao brine is a special flavored food produced by the natural fermentation of Huangjiu lees. To clarify fermentation time on its quality, this study integrated flavoromics analysis, macro-genomics, and polypeptide omics to analyze the volatile flavor components, microbial species, and flavor peptide distributions of four groups of samples (XZ-1Y, XZ-2Y, XZ-3Y, and XZ-4Y) fermented for 1–4 years. The results showed that the samples fermented for 1 year had the highest contents of umami amino acids and umami peptides, and the samples fermented for 4 years had the highest contents of organic acids and fruity components. In addition, 42 volatile flavor components and 532 peptides were identified, including 393 umami taste peptides and only 37 bitter taste peptides. Correlation analysis showed that ethyl lactate and furfural were positively correlated with the abundance of Nocardioides and Stenotrophomonas, respectively. The abundance of Pseudomonas was positively correlated with four previously unreported umami peptides (FATPR, RELER, FNLERP, and RSSFLGQ) screened by molecular docking. This study provides a reference for the flavor metabolism regulation of Xiangzao brine.