Lubricants (Apr 2023)

An Experimental Investigation of the Tribological Performance and Dispersibility of 2D Nanoparticles as Oil Additives

  • Kishan Nath Sidh,
  • Dharmender Jangra,
  • Harish Hirani

DOI
https://doi.org/10.3390/lubricants11040179
Journal volume & issue
Vol. 11, no. 4
p. 179

Abstract

Read online

The present study aims to investigate the tribological performance of 2D nanoparticles such as graphene (G), molybdenum disulfide (MoS2), hexagonal boron nitride (hBN), and reduced graphene oxide (rGO) as gear lubricant additives. A new method of additive doping in gear lubricants was proposed and examined in terms of the degradation of lubricants. The additives were energized by ultrasonication, thermal agitation, and mechanical shearing to enhance the dispersibility and stability, which were confirmed using visual and rheological analysis. Further, the tribological performance of the nano-additives was studied by doping them in fresh lubricants, chemically degraded lubricants, and chemically degraded lubricants with surfactants. The results indicate that surface roughness and the method of mixing play a crucial role in reducing wear. The nano-additives exhibit an inverse relationship with the roughness, and their agglomeration results in a decline in performance. To mitigate agglomeration, oleic acid surfactant was employed, which diminished the effects of nano-additives and degraded the lubricant. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis revealed that the oleic acid and deteriorating reagent work synergistically, leading to enhanced wear volume and reduced friction. The nano-additives were characterized using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Overall, the study presents a comprehensive plan for new method of additive mixing, stability, dispersibility and tribological performance of the selected 2D nanoparticles.

Keywords