Applied Sciences (Oct 2021)
Numerical Simulation of Gas Hydrate Production Using the Cyclic Depressurization Method in the Ulleung Basin of the Korea East Sea
Abstract
The depressurization method is known as the most productive and effective method for successful methane recovery from hydrate deposits. However, this method can cause considerable subsidence because of the increased effective stress. Maintenance of geomechanical stability is necessary for sustainable production of gas from gas hydrate deposits. In this study, the cyclic depressurization method, which uses changing the bottomhole pressure and production time during primary and secondary depressurization stage, was utilized in order to increase stability in the Ulleung Basin of the Korea East Sea. Various case studies were conducted with alternating bottomhole pressure and production time of the primary and secondary depressurization stages over 400 days. Geomechanical stability was significantly enhanced, while cumulative gas production was relatively less reduced or nearly maintained. Specially, the cumulative gas production of the 6 MPa case was more than three times higher than that of the 9 MPa case, while vertical displacement was similar between them. Therefore, it was found that the cyclic depressurization method should be applied for the sake of geomechanical stability.
Keywords