Nature Communications (Oct 2022)

Combining mass spectrometry and machine learning to discover bioactive peptides

  • Christian T. Madsen,
  • Jan C. Refsgaard,
  • Felix G. Teufel,
  • Sonny K. Kjærulff,
  • Zhe Wang,
  • Guangjun Meng,
  • Carsten Jessen,
  • Petteri Heljo,
  • Qunfeng Jiang,
  • Xin Zhao,
  • Bo Wu,
  • Xueping Zhou,
  • Yang Tang,
  • Jacob F. Jeppesen,
  • Christian D. Kelstrup,
  • Stephen T. Buckley,
  • Søren Tullin,
  • Jan Nygaard-Jensen,
  • Xiaoli Chen,
  • Fang Zhang,
  • Jesper V. Olsen,
  • Dan Han,
  • Mads Grønborg,
  • Ulrik de Lichtenberg

DOI
https://doi.org/10.1038/s41467-022-34031-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 17

Abstract

Read online

Bioactive peptides regulate many physiological functions but progress in discovering them has been slow. Here, the authors use a machine learning framework to predict mammalian peptide candidates from the global and local structure of large-scale tissue-specific mass spectrometry data.