MATEC Web of Conferences (Jan 2018)
Study on column generation for the lot-sizing and scheduling problem with sequencedependent setup time
Abstract
The capacitated lot-sizing and scheduling problem with sequence-dependent setup time and carryover setup state is a challenge problem in the semiconductor assembly and test manufacturing. For the problem, a new mixed integer programming model is proposed, followed by exploring its relative efficiency in obtaining optimal solutions and linearly relaxed optimal solutions. On account of the sequence-dependent setup time and the carryover of setup states, a per-machine Danzig Wolfe decomposition is proposed. We then build a statistical estimation model to describe correlation between the optimal solutions and two lower bounds including the linear relaxation solutions, and the pricing sub-problem solutions of Danzig Wolfe decomposition, which gives insight on the optimal values about information regarding whether or not the setup variables in the optimal solution take the value of 1, and the information is further used in the branch and select procedure. Numerical experiments are conducted to test the performance of the algorithm.