Biomolecules (Jun 2013)

The Roles of Sphingosine Kinase 1 and 2 in Regulating the Metabolome and Survival of Prostate Cancer Cells

  • Nigel J. Pyne,
  • Susan Pyne,
  • David G. Watson,
  • Robert Bittman,
  • Evgeny Berdyshev,
  • Irina Gorshkova,
  • Francesca Tonelli,
  • Viswanathan Natarajan,
  • Manal Alossaimi

DOI
https://doi.org/10.3390/biom3020316
Journal volume & issue
Vol. 3, no. 2
pp. 316 – 333

Abstract

Read online

We have previously shown that treatment of androgen-sensitive LNCaP cells with the sphingosine kinase (SK) inhibitor SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) induces the proteasomal degradation of two N-terminal variants of SK1 (SK1a and SK1b), increases C22:0-ceramide and diadenosine 5′,5′′′-P1,P3-triphosphate (Ap3A) and reduces S1P levels, and promotes apoptosis. We have now investigated the effects of three SK inhibitors (SKi, (S)-FTY720 vinylphosphonate, and (R)-FTY720 methyl ether) on metabolite and sphingolipid levels in androgen-sensitive LNCaP and androgen-independent LNCaP-AI prostate cancer cells. The 51 kDa N-terminal variant of SK1 (SK1b) evades the proteasome in LNCaP-AI cells, and these cells do not exhibit an increase in C22:0-ceramide or Ap3A levels and do not undergo apoptosis in response to SKi. In contrast, the SK inhibitor (S)-FTY720 vinylphosphonate induces degradation of SK1b in LNCaP-AI, but not in LNCaP cells. In LNCaP-AI cells, (S)-FTY720 vinylphosphonate induces a small increase in C16:0-ceramide levels and cleavage of polyADPribose polymerase (indicative of apoptosis). Surprisingly, the level of S1P is increased by 7.8- and 12.8-fold in LNCaP and LNCaP-AI cells, respectively, on treatment with (S)-FTY720 vinylphosphonate. Finally, treatment of androgen-sensitive LNCaP cells with the SK2-selective inhibitor (R)-FTY720 methyl ether increases lysophosphatidylinositol levels, suggesting that SK2 may regulate lyso-PI metabolism in prostate cancer cells.

Keywords