Advances in Mathematical Physics (Jan 2014)

Field Equations in the Complex Quaternion Spaces

  • Zi-Hua Weng

DOI
https://doi.org/10.1155/2014/450262
Journal volume & issue
Vol. 2014

Abstract

Read online

The paper aims to adopt the complex quaternion and octonion to formulate the field equations for electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition to combine some physics contents of two fields, which were considered to be independent of each other in the past. J. C. Maxwell applied simultaneously the vector terminology and the quaternion analysis to depict the electromagnetic theory. This method edified the paper to introduce the quaternion and octonion spaces into the field theory, in order to describe the physical feature of electromagnetic and gravitational fields, while their coordinates are able to be the complex number. The octonion space can be separated into two subspaces, the quaternion space and the S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, field equations, and so forth, in the gravitational field. In the S-quaternion space, it is able to deduce the field potential, field strength, field source, and so forth, in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features; meanwhile, the S-quaternion space is proper to depict the electromagnetic features.