Agronomy (Jun 2024)

Water-Saving Irrigation and N Reduction Increased the Rice Harvest Index, Enhanced Yield and Resource Use Efficiency in Northeast China

  • Sicheng Du,
  • Zhongxue Zhang,
  • Jian Song,
  • Ming Liu,
  • Peng Chen,
  • Zhijuan Qi,
  • Tiecheng Li,
  • Yu Han,
  • Dan Xu

DOI
https://doi.org/10.3390/agronomy14061324
Journal volume & issue
Vol. 14, no. 6
p. 1324

Abstract

Read online

For agricultural production, improving the rice harvest index (HI) through agricultural management practices is a major means to enhance water and N utilization efficiency and yield. Both irrigation regimes and nitrogen (N) rates are important aspects of agricultural management practices. However, it is unclear how the rice HI is affected by water and N. This study aimed to clarify the mechanism underlying the response of the rice HI to water and N, and to explore the most suitable water-saving and N reduction management practices to ensure yield. A two-year (2021~2022) field experiment was conducted on Mollisols in Northeast China. In this experiment, nine treatments were performed, involving three irrigation regimes (flooded irrigation, controlled irrigation, and “thin-shallow-wet-dry” irrigation) and three N rates (110, 99, and 88 kg/ha). The rice agronomic traits and transfer of photoassimilates under different water and N management practices were observed and studied; rice HI, WUE, and the NUE of rice was calculated and analyzed. The highest HI was achieved under controlled irrigation with a 99 kg/ha N rate, at values of 0.622 and 0.621 in 2021 and 2022, respectively. Controlled irrigation (CI) with an appropriate reduction in the N rate increased the proportion of productive tillers, the transfer rate of dry matter and non-structural carbohydrates (NSCs), the sugar–spikelet ratio, the grain–leaf ratio, and the leaf area index (LAI) during the heading–flowering stage. A subsequent analysis indicated that the main reason for the increase in the HI was the increase in the sugar–spikelet ratio during the heading–flowering stage. A high HI increased the rice yield by increasing the thousand-grain weight. The present study suggested that water-saving irrigation regimes and appropriate N reduction not only led to water and fertilizer resource savings but also improved agronomic characteristics during rice growth and enhanced transport capacity. Thus, these practices improved the rice HI and have enormous potential for increasing yield. Therefore, regulating the rice HI through water and N management methods should be considered an important strategy for improving rice yield.

Keywords