Energies (Feb 2023)

Implementation of EFC Charging Station by Multiport Converter with Integration of RES

  • Jayaprakash Suvvala,
  • Kannaiah Sathish Kumar

DOI
https://doi.org/10.3390/en16031521
Journal volume & issue
Vol. 16, no. 3
p. 1521

Abstract

Read online

Electric vehicles (EVs) are gradually becoming an integral part of the drive to accomplish sustainable energy standards. Due to their limited onboard battery capacity, EVs’ expanding popularity creates a need for widespread charging stations. However, fast charging stations, particularly Extreme Fast Charging (EFC), may impose a hassle on the electrical system due to overload during peak hours, frequent power gaps, and voltage sag. To flatten the power supply, the photovoltaic (PV) Hybrid Energy Storage Systems (HESS) and the uncertain and variable nature of PV systems always include solar and hybrid energy storage systems (HESS) such as batteries and supercapacitors. This research suggests a multi-port DC-DC converter (MPC) with a bidirectional DC-DC converter for battery ESS-integrated PV systems. The MPC can regulate the majority of active power through PV to a battery, PV to an EV charging station, HESS to an EV charging station, and PV to AC grid. Additionally, a PI controller is used for the MPC, taking both the PV and battery voltage variations into account. Therefore, the presented configuration can achieve the key benefits of greater integration, more efficiency, and reduced cost. Simulation results show the advantages of this multiport EV charging circuit with PV-HESS and design in different modes.

Keywords