Royal Society Open Science (Jul 2024)
Warming sea surface temperatures are linked to lower shorebird migratory fuel loads
Abstract
Warming sea surface temperatures (SSTs) are altering the biological structure of intertidal wetlands at a global scale, with potentially serious physiological and demographic consequences for migratory shorebird populations that depend on intertidal sites. The effects of mediating factors, such as age-related foraging skill, in shaping the consequences of warming SSTs on shorebird populations, however, remain largely unknown. Using morphological measurements of Dunlin fuelling for a >3000 km transoceanic migration, we assessed the influence of climatic conditions and age on individuals’ migratory fuel loads and performance. We found that juveniles were often at risk of exhausting their fuel loads en route to primary wintering grounds, especially following high June SSTs in the previous year; the lagged nature of which suggests SSTs acted on juvenile loads by altering the availability of critical prey. Up to 45% fewer juveniles may have reached wintering grounds via a non-stop flight under recent high SSTs compared to the long-term trend. Adults, by contrast, were highly capable of reaching wintering grounds in non-stop flight across years. Our findings suggest that juveniles were disproportionately impacted by apparent SST-related declines in critical prey, and illustrate a general mechanism by which climate change may shape migratory shorebird populations worldwide.
Keywords