Ciência Florestal (Jan 2012)
FUNGOS MICORRÍZICOS ARBUSCULARES E PROTEÍNA DO SOLO RELACIONADA À GLOMALINA EM ÁREA DEGRADADA POR EXTRAÇÃO DE ARGILA E REVEGETADA COM EUCALIPTO E ACÁCIA
Abstract
The objective of this study was to evaluate the influence of revegetation with Eucalyptus camaldulensis and Acacia mangium in pure and mixed stands in the composition and mycorrhizal fungi diversity (AMF), as well as in the production of glomalin-related soil protein (GRSP) of an area degraded by clay extraction. The experimental design used was randomized complete block with four treatments (pure stands Eucalyptus camaldulensis and Acacia mangium; mixed Eucalyptus camaldulensis + Acacia mangium; and coveredwith spontaneous vegetation - ADVE) and three replications. Soil samples were collected at 0-5 cm soil layer in each plot. The spores were extracted and taxonomically identified. Relative density, frequency of each species and the Shannon-Wiener, Pielou and Simpson indexes were analyzed. The GRSP (total glomalin - TG and easily extractable glomalin - EEG) was extracted with sodium citrate and quantified by the Bradford method. Abundance of AMF was higher in the degraded areas covered byweeds (spontaneous vegetation) compared to plantations; however, it showed lower species diversity. The areas of eucalyptmonoculture showed a lower level of AMF diversity in relation to areas of eucalyptintercropped with Acacia. The genera Glomus and Acaulospora were the AMF, with the largest number of species. The GRSP was closely correlated with soil C and N, which observed in greater amounts in plantations in relation to the sites covered with spontaneous vegetation. Revegetation of clay extraction site promoted the reduction of AMF sporulation, while the diversity and amount GRSP increased.