Applied Sciences (Aug 2024)
FN-GNN: A Novel Graph Embedding Approach for Enhancing Graph Neural Networks in Network Intrusion Detection Systems
Abstract
With the proliferation of the Internet, network complexities for both commercial and state organizations have significantly increased, leading to more sophisticated and harder-to-detect network attacks. This evolution poses substantial challenges for intrusion detection systems, threatening the cybersecurity of organizations and national infrastructure alike. Although numerous deep learning techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs) have been applied to detect various network attacks, they face limitations due to the lack of standardized input data, affecting model accuracy and performance. This paper proposes a novel preprocessing method for flow data from network intrusion detection systems (NIDSs), enhancing the efficacy of a graph neural network model in malicious flow detection. Our approach initializes graph nodes with data derived from flow features and constructs graph edges through the analysis of IP relationships within the system. Additionally, we propose a new graph model based on the combination of the graph neural network (GCN) model and SAGEConv, a variant of the GraphSAGE model. The proposed model leverages the strengths while addressing the limitations encountered by the previous models. Evaluations on two IDS datasets, CICIDS-2017 and UNSW-NB15, demonstrate that our model outperforms existing methods, offering a significant advancement in the detection of network threats. This work not only addresses a critical gap in the standardization of input data for deep learning models in cybersecurity but also proposes a scalable solution for improving the intrusion detection accuracy.
Keywords