应用气象学报 (May 2020)
Retrieval of Aerosol Optical Properties by Skyradiometer over Urban Beijing
Abstract
Aerosol particles can scatter and absorb solar radiation and affect microphysical processes of clouds to change the earth's radiation budget. It is reported that aerosol particles not only have an impact on climate change, but also cause polluted environment and affect human health. Ground-based measurement networks such as AERONET and SKYNET are very useful and accurate ways to monitor the spatio-temporal distribution of aerosols using the sun-sky radiometric technique. Aerosol optical properties retrieved by a PREDE skyradiometer are used to analyze the variation of aerosol in Beijing from October 2018 to September 2019. Results show that aerosol optical depth at 500 nm is high from February to July, the highest value is 0.71 in June, the highest single scattering albedo is 0.96 in August and the lowest value is 0.89 in May, Ångström exponent in summer (1.11) is higher than that in spring (0.89), and the volume size distribution pattern shows typical bimodal in every month. According to the Chinese National Secondary Standards for PM2.5, pollution days are picked. It is found that pollution days only account for 17%, of which 62% are light pollution days. The statistical result of air quality in Beijing is good from October 2018 to September 2019. Aerosol optical properties and PM2.5 under pollution and clean weather conditions in Beijing are discussed. The value of PM2.5 under pollution weather condition is 2.27 times larger than that under clean weather condition, values of aerosol optical depth at 500 nm are 0.85 and 0.49 under pollution and clean weather conditions, respectively. Values of single scattering albedo are 0.96 and 0.92 under pollution and clean weather conditions, respectively. The value of Ångström exponent under pollution weather condition (1.02) is larger than that under clean weather condition (0.91) in winter while the value of Ångström exponent under pollution weather condition (0.87) is smaller than that under clean weather condition (0.90) in spring. Skyradiometer retrieved data, combined with lidar measurement and meteorological data are used to analyze a serious pollution event in winter over Beijing. The result suggests that poor meteorological conditions (low wind speed and high relative humidity), the hygroscopic growth of aerosol, aerosol secondary transformation, local emissions and regional transportation lead to this serious pollution event.
Keywords