BMC Oral Health (Sep 2024)
Development and validation of predictive models for skeletal malocclusion classification using airway and cephalometric landmarks
Abstract
Abstract Objective This study aimed to develop a deep learning model to predict skeletal malocclusions with an acceptable level of accuracy using airway and cephalometric landmark values obtained from analyzing different CBCT images. Background In orthodontics, multitudinous studies have reported the correlation between orthodontic treatment and changes in the anatomy as well as the functioning of the airway. Typically, the values obtained from various measurements of cephalometric landmarks are used to determine skeletal class based on the interpretation an orthodontist experiences, which sometimes may not be accurate. Methods Samples of skeletal anatomical data were retrospectively obtained and recorded in Digital Imaging and Communications in Medicine (DICOM) file format. The DICOM files were used to reconstruct 3D models using 3DSlicer (slicer.org) by thresholding airway regions to build up 3D polygon models of airway regions for each sample. The 3D models were measured for different landmarks that included measurements across the nasopharynx, the oropharynx, and the hypopharynx. Male and female subjects were combined as one data set to develop supervised learning models. These measurements were utilized to build 7 artificial intelligence-based supervised learning models. Results The supervised learning model with the best accuracy was Random Forest, with a value of 0.74. All the other models were lower in terms of their accuracy. The recall scores for Class I, II, and III malocclusions were 0.71, 0.69, and 0.77, respectively, which represented the total number of actual positive cases predicted correctly, making the sensitivity of the model high. Conclusion In this study, it is observed that the Random Forest model was the most accurate model for predicting the skeletal malocclusion based on various airway and cephalometric landmarks.
Keywords