Environmental Data Science (Jan 2024)

Graph characterization of higher-order structure in atmospheric chemical reaction mechanisms

  • Sam J. Silva,
  • Mahantesh M. Halappanavar

DOI
https://doi.org/10.1017/eds.2024.30
Journal volume & issue
Vol. 3

Abstract

Read online

Atmospheric chemical reactions play an important role in air quality and climate change. While the structure and dynamics of individual chemical reactions are fairly well understood, the emergent properties of the entire atmospheric chemical system, which can involve many different species that participate in many different reactions, are not well described. In this work, we leverage graph-theoretic techniques to characterize patterns of interaction (“motifs”) in three different representations of gas-phase atmospheric chemistry, termed “chemical mechanisms.” These widely used mechanisms, the master chemical mechanism, the GEOS-Chem mechanism, and the Super-Fast mechanism, vary dramatically in scale and application, but they all generally aim to simulate the abundance and variability of chemical species in the atmosphere. This motif analysis quantifies the fundamental patterns of interaction within the mechanisms, which are directly related to their construction. For example, the gas-phase chemistry in the very small Super-Fast mechanism is entirely composed of bimolecular reactions, and its motif distribution matches that of an individual bimolecular reaction well. The larger and more complex mechanisms show emergent motif distributions that differ strongly from any specific reaction type, consistent with their complexity. The proposed motif analysis demonstrates that while these mechanisms all have a similar design goal, their higher-order structure of interactions differs strongly and thus provides a novel set of tools for exploring differences across chemical mechanisms.

Keywords