Mathematical and Computational Applications (Nov 2022)

Increased Material Density within a New Biomechanism

  • Carlos Aurelio Andreucci,
  • Elza M. M. Fonseca,
  • Renato N. Jorge

DOI
https://doi.org/10.3390/mca27060090
Journal volume & issue
Vol. 27, no. 6
p. 90

Abstract

Read online

A new mechanism, applied in this study as a biomechanical device, known as a Bioactive Kinetic Screw (BKS) for bone implants is described. The BKS was designed as a bone implant, in which the bone particles, blood, cells, and protein molecules removed during bone drilling are used as a homogeneous autogenous transplant at the same implant site, aiming to optimize the healing process and simplify the surgical procedure. In this work, the amount of bone that will be compacted inside and around the new biomechanism was studied, based on the density of the bone applied. This study allows us to analyze the average bone density in humans (1.85 mg/mm3 or 1850 µg/mm³) with four different synthetic bone densities (Sawbones PCF 10, 20, 30 and 40). The results show that across all four different synthetic bones densities, the bone within the new model is 3.45 times denser. After a pilot drill (with 10 mm length and 1.8 mm diameter), in cases where a guide hole is required, the increase in ratio is equal to 2.7 times inside and around the new biomechanism. The in vitro test validated the mathematical results, describing that in two different materials, the same compact factor of 3.45 was determined with the new biomechanical device. It was possible to describe that BKS can become a powerful tool in the diagnosis and treatment of natural bone conditions and any type of disease.

Keywords