Frontiers in Robotics and AI (Feb 2021)

Learning Optimal Fin-Ray Finger Design for Soft Grasping

  • Zhifeng Deng,
  • Miao Li,
  • Miao Li

DOI
https://doi.org/10.3389/frobt.2020.590076
Journal volume & issue
Vol. 7

Abstract

Read online

The development of soft hands is an important progress to empower robotic grasping with passive compliance while greatly decreasing the complexity of control. Despite the advances during the past decades, it is still not clear how to design optimal hands or fingers given the task requirements. In this paper, we propose a framework to learn the optimal design parameter for a fin-ray finger in order to achieve stable grasping. First, the pseudo-kinematics of the soft finger is learned in simulation. Second, the task constraints are encoded as a combination of desired grasping force and the empirical grasping quality function in terms of winding number. Finally, the effectiveness of the proposed approach is validated with experiments in simulation and using real-world examples as well.

Keywords