Results in Engineering (Dec 2024)
Modelling key reactive processes relevant to bisulfide transport through highly compacted bentonite
Abstract
The Canadian deep geological repository (DGR) design consists of copper coated used fuel containers (UFCs) placed within a highly compacted bentonite (HCB) buffer surrounded by a suitable host rock. Although the copper is thermodynamically stable in oxygen-free environments, it is potentially susceptible to microbiologically influenced corrosion from bisulfide (HS-). Therefore, understanding HS- corrosion is important to ensure long-term performance of UFCs. Various reactions in the bentonite barrier of the DGR can affect HS- transport through the HCB and therefore the extent of copper corrosion caused by HS-. Since HS- transport and reactive processes are interconnected, numerical models are required to assess the complex HS- reactive transport dynamics and quantify the influence of reactive processes on HS- transport and corrosion. In this paper, various HS- transport models were coupled with (i) a key geochemical reaction between HS- and iron (i.e., simulating HS- retardation due to iron sulfide formation) or (ii) HS- adsorption. Since HS- is an anion, anion exclusion was also explored. Valuable insight was obtained through validation, comparison, and sensitivity analyses of these models. A comparison between experimental and modelled HS- transport dynamics showed that HS- is being retained by the bentonite due to reactive processes and anion exclusion is occurring. Lastly, HS- transport was simulated for the entire DGR lifespan and was found to be delayed (≈50–800 years) due to FeS formation or HS- adsorption. However, these predicted HS- diffusion delays are relatively short in a DGR lifespan (i.e., 1 million years) and do not impact long-term HS- corrosion.