PLoS ONE (Jan 2020)

iTRAQ proteomics reveals the regulatory response to Magnaporthe oryzae in durable resistant vs. susceptible rice genotypes.

  • Zuobin Ma,
  • Lili Wang,
  • Mingzhu Zhao,
  • Shuang Gu,
  • Changhua Wang,
  • Jiaming Zhao,
  • Zhiqiang Tang,
  • Hong Gao,
  • Liying Zhang,
  • Liang Fu,
  • Yongan Yin,
  • Na He,
  • Wenjing Zheng,
  • Zhengjin Xu

DOI
https://doi.org/10.1371/journal.pone.0227470
Journal volume & issue
Vol. 15, no. 1
p. e0227470

Abstract

Read online

Rice blast disease caused by Magnaporthe oryzae (M. oryzae) is one of the most serious diseases. Although previous research using two-dimensional gel-based proteomics to assess the proteins related to the rice blast resistance had been done, few proteins were identified. Here, we used the iTRAQ method to detect the differentially expressed proteins (DEPs) in the durable resistant rice variety Gangyuan8 (GY8) and the susceptible rice variety Lijiangxintuanheigu (LTH) in response to M. oryzae invasion, and then transcriptome sequencing was used to assist analysis A total of 193 and 672 DEPs were specifically identified in GY8 and LTH, respectively, with only 46 similarly expressed DEPs being shared by GY8 and LTH.39 DEPs involved in plant-pathogen interaction, plant hormone signal transduction, fatty acid metabolism and peroxisome biosynthesis were significantly different between compatible interaction (LTH) and incompatible interaction (GY8). Some proteins participated in peroxide signal transduction and biosynthesis was down-regulated in GY8 but up-regulated in LTH. A lot of genes encoding pathogenesis-related gene (PR), such as chitinase and glucanase, were significantly up-regulated at both the transcriptome and proteome levels at 24 hours post-inoculation in GY8, but up-regulated at the transcriptome level and down-regulated at the proteome level in LTH. Our study reveals that the pathogen-associated molecular pattern (PAMP)-triggered immunity defense system may be activated at the transcriptome level but was inhibited at the protein level in susceptible rice varieties after inoculation. The results may facilitate future studies of the molecular mechanisms of rice blast resistance.