Entropy (Apr 2022)

Non-Orthogonality Measure for a Collection of Pure Quantum States

  • Kentaro Kato

DOI
https://doi.org/10.3390/e24050581
Journal volume & issue
Vol. 24, no. 5
p. 581

Abstract

Read online

Modern optical communication technology can realize a large-scale multilevel (or M-ary) optical signal. Investigating the quantum mechanical nature of such a large-scale M-ary optical signal is essential for a unified understanding of quantum information science and optical communication technology. This article focuses on the quantum-mechanical non-orthogonality for a collection of pure quantum states and proposes a non-orthogonality index based on the least squares error criterion in quantum detection theory. First, we define the index for linearly independent signals, and the proposed index is analyzed through numerical simulations. Next, the index is applied to a highly large-scale M-ary phase-shift keying (PSK) coherent state signal. Furthermore, the index is compared with the capacity of the pure state channel with the PSK signal. As a result, it is shown that a highly large-scale M-ary PSK coherent state signal exhibits a quantum nature even when the signal transmission power is very high. Thus, the theoretical characterization of a highly large-scale M-ary coherent state signal based on the proposed index will be the first step toward a better understanding of cutting-edge optical communication technologies such as the quantum stream cipher Y00.

Keywords