Systems (May 2018)

Modeling Isomorphic Systems Processes Using Monterey Phoenix

  • Kristin Giammarco,
  • Len Troncale

DOI
https://doi.org/10.3390/systems6020018
Journal volume & issue
Vol. 6, no. 2
p. 18

Abstract

Read online

This article describes preliminary research (a proof of concept test) on the potential value of formalizing Isomorphic Systems Processes (ISPs) based on systems science research using the Monterey Phoenix (MP) language, approach and tool. MP is a Navy-developed framework for behavior modeling of system, process, and software behaviors, and has a demonstrated ability to expose emergent behaviors in engineered, complex systems. In this article, we introduce the related lines of research and discuss and demonstrate use of MP in modeling ISPs. We accomplish the demonstration through a small example of the Cycles ISP and discuss several possible variations generated from an MP model of this single ISP. Among these variations, we found patterns of oscillation, lifecycle, recycling, positive reinforcement, negative reinforcement, and combinations thereof, all derived from a common model of a cycle comprising six lines of MP code. Although the detection of three of these patterns (oscillations, lifecycles, and recycling) was anticipated, the involvement of the other two patterns (positive and negative reinforcement) were not anticipated in pre-model analyses and provided evidence to resolve a dispute over the application of ISPs in systems engineering. From conducting this initial experimentation at the intersection of different research domains, we found that using MP to formalize relationships within and among presently non-formally-described ISPs yielded new insights into system processes.

Keywords