Advances in Radiation Oncology (Jul 2023)
Identification of Induced Radionuclides Produced from Dental Metals in Proton Beam Therapy for Head and Neck Cancer
Abstract
Purpose: To identify the induced radionuclides produced from dental metals in proton beam therapy and investigate the accuracy of the Monte Carlo (MC) simulation by comparing the measured radioactivity. Methods and Materials: Two dental metals of pure titanium and gold-silver-palladium alloy, commonly used in Japan, were used in this study. The dental metal placed at the center of Spread-out Bragg Peak was irradiated by 150-MeV passive scattering proton beam. The gamma rays emitted from the activated dental metals were measured using a high purity germanium (HPGe) detector. The induced radionuclides were identified from the measured gamma-ray energies. Furthermore, the Particle and Heavy Ion Transport code System v.3.24 and DCHAIN were used for the MC simulation. The measured radionuclides and their radioactivity were compared with the simulation results. Results: In the MC simulation for the activated titanium, vanadium-47, with a half-life of 32.6 minutes had the strongest radioactivity among the induced radionuclides. The energy peaks of gamma rays emitted from titanium-51, scandium-43, scandium-44, and annihilation gamma rays were observed for the activated titanium in the HPGe detector. In the MC simulation for the activated gold-silver-palladium alloy, silver-108, with a half-life of 2.4 minutes had the strongest radioactivity. The energy peaks of gamma rays emitted from silver-104, silver-104 m, silver-108, and annihilation gamma rays were observed for the activated gold-silver-palladium alloy in the HPGe detector. Furthermore, the induced radionuclides and their radioactivity in the MC simulation were consistent with the measurement results for both dental metals, except for a few radionuclides. Conclusions: We identify the induced radionuclides produced from 2 dental metals and compared their radioactivity between the measurements and the MC simulation. Although the identification of the induced radionuclides using the MC simulation remains uncertain, the MC simulation can be clinically effective for pre-estimating the induced radionuclides in proton beam therapy.