Frontiers in Robotics and AI (May 2022)
Analyzing the Explanatory Power of Bionic Systems With the Minimal Cognitive Grid
Abstract
In this article, I argue that the artificial components of hybrid bionic systems do not play a direct explanatory role, i.e., in simulative terms, in the overall context of the systems in which they are embedded in. More precisely, I claim that the internal procedures determining the output of such artificial devices, replacing biological tissues and connected to other biological tissues, cannot be used to directly explain the corresponding mechanisms of the biological component(s) they substitute (and therefore cannot be used to explain the local mechanisms determining an overall biological or cognitive function replicated by such bionic models). I ground this analysis on the use of the Minimal Cognitive Grid (MCG), a novel framework proposed in Lieto (Cognitive design for artificial minds, 2021) to rank the epistemological and explanatory status of biologically and cognitively inspred artificial systems. Despite the lack of such a direct mechanistic explanation from the artificial component, however, I also argue that the hybrid bionic systems can have an indirect explanatory role similar to the one played by some AI systems built by using an overall structural design approach (but including the partial adoption of functional components). In particular, the artificial replacement of part(s) of a biological system can provide i) a local functional account of that part(s) in the context of the overall functioning of the hybrid biological–artificial system and ii) global insights about the structural mechanisms of the biological elements connected to such artificial devices.
Keywords