Metals (Mar 2023)
MoSe<sub>2</sub> Complex with N and B Dual-Doped 3D Carbon Nanofibers for Sodium Batteries
Abstract
The sodium battery is one of the best energy storage technologies due to its abundant resource reserves and excellent energy storage ability. As a two-dimensional layered transition metal, molybdenum selenide (MoSe2) has large interlayer spacing and a high theoretical capacity (470 mAh∙g−1). Its structure is suitable for the negative electrode of sodium-ion batteries, with a large ionic radius and slow ion diffusion kinetics. However, it is difficult for the rate capability and cycling performance of MoSe2 to meet practical needs due to a weak intrinsic electron transport ability and volume expansion during sodium absorption. The hydrothermal synthesis method was used to synthesize the MoSe2 complex based on boron and nitrogen dual-doped 3D carbon fibers obtained from bacterial cellulose membranes (MoSe2/N&B-BCM) for sodium batteries. Additionally, electrochemical analysis and experimental characterization were performed. In summary, the experimental analysis shows that MoSe2/N&B-BCM has excellent conductivity, structural integrity, cyclability (328 mAh∙g−1 after 100 cycles at a 0.5 c constant rate), and rate stability.
Keywords