Plant Wearable Sensors Based on FBG Technology for Growth and Microclimate Monitoring
Daniela Lo Presti,
Sara Cimini,
Carlo Massaroni,
Rosaria D’Amato,
Michele Arturo Caponero,
Laura De Gara,
Emiliano Schena
Affiliations
Daniela Lo Presti
Unit of Measurement and Biomedical Instrumentations, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
Sara Cimini
Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
Carlo Massaroni
Unit of Measurement and Biomedical Instrumentations, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
Rosaria D’Amato
Photonics Micro and Nanostructures Laboratory, Fusion and Technologies for Nuclear Safety and Security Department, FSN-TECFIS-MNF, ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati, Italy
Michele Arturo Caponero
Photonics Micro and Nanostructures Laboratory, Fusion and Technologies for Nuclear Safety and Security Department, FSN-TECFIS-MNF, ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati, Italy
Laura De Gara
Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
Emiliano Schena
Unit of Measurement and Biomedical Instrumentations, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
Plants are primary resources for oxygen and foods whose production is fundamental for our life. However, diseases and pests may interfere with plant growth and cause a significant reduction of both the quality and quantity of agriculture products. Increasing agricultural productivity is crucial for poverty reduction and food security improvements. For this reason, the 2030 Agenda for Sustainable Development gives a central role to agriculture by promoting a strong technological innovation for advancing sustainable practices at the plant level. To accomplish this aim, recently, wearable sensors and flexible electronics have been extended from humans to plants for measuring elongation, microclimate, and stressing factors that may affect the plant’s healthy growth. Unexpectedly, fiber Bragg gratings (FBGs), which are very popular in health monitoring applications ranging from civil infrastructures to the human body, are still overlooked for the agriculture sector. In this work, for the first time, plant wearables based on FBG technology are proposed for the continuous and simultaneous monitoring of plant growth and environmental parameters (i.e., temperature and humidity) in real settings. The promising results demonstrated the feasibility of FBG-based sensors to work in real situations by holding the promise to advance continuous and accurate plant health growth monitoring techniques.