PLoS ONE (Jan 2014)

Wintering habitat model for the North Atlantic Right Whale (Eubalaena glacialis) in the southeastern United States.

  • Timothy A Gowan,
  • Joel G Ortega-Ortiz

DOI
https://doi.org/10.1371/journal.pone.0095126
Journal volume & issue
Vol. 9, no. 4
p. e95126

Abstract

Read online

The coastal waters off the southeastern United States (SEUS) are a primary wintering ground for the endangered North Atlantic right whale (Eubalaena glacialis), used by calving females along with other adult and juvenile whales. Management actions implemented in this area for the recovery of the right whale population rely on accurate habitat characterization and the ability to predict whale distribution over time. We developed a temporally dynamic habitat model to predict wintering right whale distribution in the SEUS using a generalized additive model framework and aerial survey data from 2003/2004 through 2012/2013. We built upon previous habitat models for right whales in the SEUS and include data from new aerial surveys that extend the spatial coverage of the analysis, particularly in the northern portion of this wintering ground. We summarized whale sightings, survey effort corrected for probability of whale detection, and environmental data at a semimonthly resolution. Consistent with previous studies, sea surface temperature (SST), water depth, and survey year were significant predictors of right whale relative abundance. Additionally, distance to shore, distance to the 22°C SST isotherm, and an interaction between time of year and latitude (to account for the latitudinal migration of whales) were also selected in the analysis presented here. Predictions from the model revealed that the location of preferred habitat differs within and between years in correspondence with variation in environmental conditions. Although cow-calf pairs were rarely sighted in the company of other whales, there was minimal evidence that the preferred habitat of cow-calf pairs was different than that of whale groups without calves at the scale of this study. The results of this updated habitat model can be used to inform management decisions for a migratory species in a dynamic oceanic environment.