Atmosphere (Oct 2023)
Improving the Accuracy of Landsat 8 Land Surface Temperature in Arid Regions by MODIS Water Vapor Imagery
Abstract
Land surface temperature (LST) is a significant environmental factor in many studies. LST estimation methods require various parameters, such as emissivity, temperature, atmospheric transmittance and water vapor. Uncertainty in these parameters can cause error in LST estimation. The present study shows how the moderate resolution imaging spectroradiometer (MODIS) water vapor imagery can improve the accuracy of Landsat 8 LST in different land covers of arid regions of Yazd province in Iran. For this purpose, water vapor variation is analyzed for different land covers within different seasons. Validation is performed using T-based and cross-validation methods. The image of atmospheric water vapor is estimated using the MODIS sensor, and its changes are investigated in different land covers. The bare lands and sparse vegetation show the highest and lowest accuracy levels for T-based validation, respectively. The root mean square error (RMSE) is also calculated as 0.57 °C and 1.41 °C for the improved and general split-window (SW) algorithms, respectively. The cross-validation results show that the use of the MODIS water vapor imagery in the SW algorithm leads to a reduction of about 2.2% in the area where the RMSE group is above 5 °C.
Keywords