Journal of Applied Mathematics (Jan 2013)
An Analysis of Mode III Doubly Periodic Crack-Tip Field of Orthotropic Composite Materials
Abstract
The mechanical behavior near the doubly periodic crack tips for orthotropic composite materials plate subjected to antiplane shear loading is studied. This is done by complex function theory and conformal mapping of the Jacobi elliptic function with the help of boundary conditions. The analytical solution of the crack-tips stress intensity factor and the expression of stress fields are obtained. Numerical examples are given to analyze the impact of the different transverse spacing, longitudinal spacing, and the ratio of cracks periods on stress intensity factors. The results show that the crack-tip field increases with reducing either the transverse spacing or the longitudinal spacing. At the same time, the crack-tip field increases with the decrease of the ratio of cracks periods. This shows that the distribution form makes an important effect on the crack-tip field, but the crack density parameter is not the only cause.