HortScience (May 2020)
Rootstock Evaluation for Grafted Cucumbers Grown in High Tunnels: Yield and Plant Growth
Abstract
Grafting technology is increasingly being accepted in the United States, particularly for tomato (Solanum lycopersicum) production under protected structures. There is a great potential to expand this technology to other high tunnel crops. Using grafting technology in cucumber (Cucumis sativus) production is widely adopted in Asia to enhance cucumbers’ tolerance to low temperatures. But this technique is rarely used in the United States mainly because of the lack of information on the performance of the grafted plants under local production systems. Figleaf gourd (Cucurbita ficifolia), Cucurbita moschata, and squash interspecific hybrid (Cucurbita maxima × C. moschata) are the most used cucumber rootstocks worldwide. But their comparative performance was largely unknown for cucumber production in high tunnels in the Midwest United States. This study was therefore designed to compare the major types of cucumber rootstocks with the goal of identifying a rootstock with the maximized benefits for high tunnel cucumber production in the area. Nongrafted ‘Socrates’ and ‘Socrates’ grafted with Cucurbita moschata, squash interspecific hybrid, and figleaf gourd rootstocks were evaluated in high tunnels from March to June or July in 2016–19 at the Southwest Purdue Agricultural Center in Vincennes, IN. Transplant establishment, vine growth, and yield in early- and main-crop seasons were investigated. Grafted plants regardless of rootstocks ensured transplant survival even when the soil temperatures were dropped below 10 °C. Suboptimal soil conditions were encountered in the first month after transplanting. Grafted cucumbers with squash interspecific hybrid rootstock significantly increased vine growth from March to April and increased early-season yields (yield before 15 May) by 1.8 to 18.2 times compared with the early-season yields of the nongrafted cucumbers. The benefits provided by using grafting technology dismissed around middle May. Only squash interspecific hybrid rootstock improved cucumber yields in the entire production seasons. Cucumbers grafted with figleaf gourd rootstock had the lowest yield and the least plant growth after mid-May, indicating figleaf gourd rootstock may not be suitable for cucumber production under the current production system. Overall, squash interspecific hybrid was the most promising rootstock for early-season high tunnel cucumber production in the Midwest United States.
Keywords