Remote Sensing (Feb 2019)
Retrieving the Lake Trophic Level Index with Landsat-8 Image by Atmospheric Parameter and RBF: A Case Study of Lakes in Wuhan, China
Abstract
The importance of atmospheric correction is pronounced for retrieving physical parameters in aquatic systems. To improve the retrieval accuracy of trophic level index (TLI), we built eight models with 43 samples in Wuhan and proposed an improved method by taking atmospheric water vapor (AWV) information and Landsat-8 (L8) remote sensing image into the input layer of radical basis function (RBF) neural network. All image information taken in RBF have been radiometrically calibrated. Except model(a), image data used in the other seven models were not atmospherically corrected. The eight models have different inputs and the same output (TLI). The models are as follows: (1) model(a), the inputs are seven single bands; (2) model(c), besides seven single bands (b1, b2, b3, b4, b5, b6, b7), we added the AWV parameter k1 to the inputs; (3) model(c1), the inputs are AWV difference coefficient k2 and the seven bands; (4) model(c2), the input layers include seven single bands, k1 and k2; (5) model(b), seven band ratios (b3/b5, b1/b2, b3/b7, b2/b5, b2/b7, b3/b6, and b3/b4) were used as input parameters; (6) model(b1), the inputs are k1 and seven band ratios; (7) model(b2), the inputs are k2 and seven band ratios; (8) model(b3), the inputs are k1, k2, and seven band ratios. We estimated models with root mean squared error (RMSE), model(a) > model(b3) > model(b1) > model(c2) > model(c) > model(b) > model(c1) > model(b2). RMSE of the eight models are 12.762, 11.274, 10.577, 8.904, 8.361, 6.396, 5.389, and 5.104, respectively. Model b2 and c1 are two best models in these experiments, which confirms both the seven single bands and band ratios with k2 are superior to other models. Results also corroborate that most lakes in Wuhan urban area are in mesotrophic and light eutrophic states.
Keywords