PLoS ONE (Jan 2016)

Retinal Oximetry with Scanning Laser Ophthalmoscope in Infants.

  • Wouter B Vehmeijer,
  • Vigdis Magnusdottir,
  • Thorunn S Eliasdottir,
  • Sveinn Hakon Hardarson,
  • Nicoline E Schalij-Delfos,
  • Einar Stefánsson

DOI
https://doi.org/10.1371/journal.pone.0148077
Journal volume & issue
Vol. 11, no. 2
p. e0148077

Abstract

Read online

Dual wavelength retinal oximetry has been developed for adults, but is not available for infants. Retinal oximetry may provide insight into the pathophysiology of oxygen-mediated diseases like retinopathy of prematurity. More insight in the oxygen metabolism of the retina in infants may provide valuable clues for better understanding and subsequent prevention or treatment of the disease. The measurements of oxygen saturation are obtained with two fundus images simultaneously captured in two different wavelengths of light. The comparison in light absorption of oxygenated and deoxygenated hemoglobin can be used to estimate the oxygen saturation within the retinal vessels by means of a software algorithm. This study aims to make retinal oximetry available for neonates. The first step towards estimating retinal oxygen saturation is determining the optical density ratio. Therefore, the purpose of this study is to image healthy newborn infants with a scanning laser ophthalmoscope and determine the optical density ratio for retinal oximetry analysis.Images of the retina of full-term healthy infants were obtained with an SLO, Optomap 200Tx (Optos), with two laser wavelengths (532nm and 633nm). The infant lay face down on the lower arm of the parent, while the parent supported the chest and chin with one hand, and stabilized the back with the other hand. No mydriatics or eyelid specula were used during this study. The images were analyzed with modified Oxymap Analyzer software for calculation of the Optical Density Ratio (ODR) and vessel width. The ODR is inversely and approximately linearly related to the oxygen saturation. Measurements were included from the superotemporal vessel pair. A paired t-test was used for statistical analysis.Fifty-nine infants, (58% female), were included with mean gestational age of 40 ± 1.3 weeks (mean ± SD) and mean post-natal age of 16 ± 4.8 days. A total of 28 images were selected for retinal oximetry analysis. The ODR was 0.256 ± 0.041 for the arterioles and 0.421 ± 0.089 for the venules (n = 28, p < 0.001). The measured vessel-width for the arterioles was 14.1 ± 2.7 pixels and for the venules 19.7 ± 3.7 pixels (n = 28, p < 0.001).Retinal oximetry can be performed in newborn infants by combining an SLO and a dual-wavelength algorithm software. Sensitivity of the approach is indicated by the fact that the ODR measurements are significantly different between the arterioles and the venules. However, more variability in ODR is seen with the SLO approach in babies than is seen with conventional oximetry in adults. This approach is completely non-invasive, non-contact and even avoids the use of mydriatics or eyelid specula.