Cellular & Molecular Biology Letters (Oct 2018)
An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer
Abstract
Abstract Background Breast cancer is the most prevalent cancer among women, and AXL and MET are the key genes in the PI3K/AKT/mTOR pathway as critical elements in proliferation and invasion of cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of genes. Methods Bioinformatic approaches were used to find a miRNA that simultaneously targets both AXL and MET 3′-UTRs. The expression of target miRNA was evaluated in triple-negative (MDA-MB-231) and HER2-overexpressing (SK-BR-3) breast cancer cell lines as well as normal breast cells, MCF-10A, using quantitative real-time PCR. Then, the miRNA was overexpressed in normal and cancer cell lines using a lentiviral vector system. Afterwards, effects of overexpressed miRNA on the expression of AXL and MET genes were evaluated using quantitative real-time PCR. Results By applying bioinformatic software and programs, miRNAs that target the 3′-UTR of both AXL and MET mRNAs were determined, and according to the scores, miR-34a was selected for further analyses. The expression level of miR-34a in MDA-MB-231 and SK-BR-3 was lower than that of MCF-10A. Furthermore, AXL and MET expression in SK-BR-3 and MDA-MB-231 was lower and higher, respectively, than that of MCF-10A. After miR-34a overexpression, MET and AXL were downregulated in MDA-MB-231. In addition, MET was downregulated in SK-BR-3, while AXL was upregulated in this cell line. Conclusions These findings may indicate that miR-34a is an oncogenic miRNA, downregulated in the distinct breast cancer subtypes. It also targets MET and AXL 3′-UTRs in triple-negative breast cancer. Therefore, it can be considered as a therapeutic target in this type of breast cancer.
Keywords