AIMS Mathematics (Jan 2023)

Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets

  • Muhammad Akram,
  • Syed Muhammad Umer Shah,
  • Mohammed M. Ali Al-Shamiri,
  • S. A. Edalatpanah

DOI
https://doi.org/10.3934/math.2023045
Journal volume & issue
Vol. 8, no. 1
pp. 924 – 961

Abstract

Read online

Data envelopment analysis (DEA) is a linear programming approach used to determine the relative efficiencies of multiple decision-making units (DMUs). A transportation problem (TP) is a special type of linear programming problem (LPP) which is used to minimize the total transportation cost or maximize the total transportation profit of transporting a product from multiple sources to multiple destinations. Because of the connection between the multi-objective TP (MOTP) and DEA, DEA-based techniques are more often used to handle practical TPs. The objective of this work is to investigate the TP with Fermatean fuzzy costs in the presence of numerous conflicting objectives. In particular, a Fermatean fuzzy DEA (FFDEA) method is proposed to solve the Fermatean fuzzy MOTP (FFMOTP). In this regard, every arc in FFMOTP is considered a DMU. Additionally, those objective functions that should be maximized will be used to define the outputs of DMUs, while those that should be minimized will be used to define the inputs of DMUs. As a consequence, two different Fermatean fuzzy effciency scores (FFESs) will be obtained for every arc by solving the FFDEA models. Therefore, unique FFESs will be obtained for every arc by finding the mean of these FFESs. Finally, the FFMOTP will be transformed into a single objective Fermatean fuzzy TP (FFTP) that can be solved by applying standard algorithms. A numerical example is illustrated to support the proposed method, and the results obtained by using the proposed method are compared to those of existing techniques. Moreover, the advantages of the proposed method are also discussed.

Keywords