Remote Sensing (Nov 2024)

Investigating Tropical Cyclone Warm Core and Boundary Layer Structures with Constellation Observing System for Meteorology, Ionosphere, and Climate 2 Radio Occultation Data

  • Xiaoxu Qi,
  • Shengpeng Yang,
  • Li He

DOI
https://doi.org/10.3390/rs16224257
Journal volume & issue
Vol. 16, no. 22
p. 4257

Abstract

Read online

The Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) collects data covering latitudes primarily between 40 degrees north and south, providing abundant data for tropical cyclone (TC) research. The radio occultation data provide valuable information on the boundary layer. However, quality control of the data within the boundary layer remains a challenging issue. The aim of this study is to obtain a more accurate COSMIC-2 radio occultation (RO) dataset through quality control (QC) and use this dataset to validate warm core structures and explore the planetary boundary layer (PBL) structures of TCs. In this study, COSMIC-2 data are used to analyze the distribution of the relative local spectral width (LSW) and the confidence parameter characterizing the random error of the bending angle. An LSW less than 20% is set as a data QC threshold, and the warm core and PBL composite structures of TCs at three intensities in the Northwest Pacific Ocean are investigated. We reproduce the warm core intensity and warm core height characteristics of TCs. In the radial direction of the typhoon eyewall, the impact height of the PBL increases from 3.45 km to 4 km, with the tropopause ranging from 160 hPa to 100 hPa. At the bottom of the troposphere, the variations in the positive and negative bias between the RO-detected and background field bending angles correspond well to the PBL heights, and the variations in the positive bias between the RO-detected and background field refractivity reach 14%. This research provides an effective QC method and reveals that the bending angle is sensitive to the PBL height.

Keywords