Journal of Lipid Research (Feb 1987)
Effect of fish oil versus lard diets on the chemical and physical properties of low density lipoproteins of nonhuman primates.
Abstract
Twenty-four adult male African green grivet monkeys were fed diets containing 42% of calories as lard or menhaden oil and 0.76 mg of cholesterol/kcal for a period of 8 months. Plasma samples from fasting animals were then taken and low density lipoproteins (LDL) were isolated by ultracentrifugation and agarose column chromatography. The LDL were analyzed chemically, and physical properties of the particles were studied by differential scanning calorimetry. The fish oil group had significantly smaller LDL (2.91 vs. 3.43 g/mumol), which contained fewer molecules per particle of all lipid constituents, except triglyceride, compared to the lard-fed animals. The fish oil-fed group had 15% of the total cholesteryl esters as n-3 fatty acyl species and the number of n-3, but not n-6, cholesteryl esters per LDL particle was proportional to LDL size. The numbers of saturated and monounsaturated cholesteryl ester species per LDL particle were highly correlated with LDL size for both diet groups. The LDL of the fish oil group had broad reversible thermotropic transitions that were 12-13 degrees C lower than those of the lard group. These transitions were indicative of order-disorder transitions of the LDL core cholesteryl esters. The peak transition temperature of LDL of the lard group was proportional to the ratio of saturated and monounsaturated to polyunsaturated cholesteryl ester species (CEFA ratio). However, the much lower peak transition temperature of the LDL of the fish oil group was not related to the CEFA ratio nor to the triglyceride content of the particles, but rather, to the n-3 cholesteryl ester content of the particles. Studies of cholesteryl ester model systems demonstrated that relatively small amounts of n-3 cholesteryl esters (less than 15% of total cholesteryl ester) could result in a lowering of the peak transition temperature of cholesteryl linoleate similar to that seen for intact LDL. We conclude that n-3 cholesteryl esters in small quantities have a marked disordering effect on the core cholesteryl esters of LDL, resulting in a striking depression of LDL transition temperature. In addition, we conclude that n-3 cholesteryl esters are preferentially utilized relative to n-6 cholesteryl esters to increase the number of cholesteryl esters per LDL particle with LDL enlargement in fish oil-fed animals.