Iranian Journal of Basic Medical Sciences (Mar 2022)

Mastoparan M extracted from Vespa magnifica alleviates neuronal death in global cerebral ischemia-reperfusion rat model

  • Mei Wang,
  • Xiu-Mei Wu,
  • Miao He,
  • Heng Liu,
  • Zhi-Bing Yang,
  • Yue Li,
  • Guang-ming Wang,
  • Hai-Rong Zhao,
  • Chenggui Zhang

DOI
https://doi.org/10.22038/ijbms.2022.60745.13461
Journal volume & issue
Vol. 25, no. 3
pp. 320 – 329

Abstract

Read online

Objective(s): Global cerebral ischemia (GCI), a consequence of cardiac arrest (CA), can significantly damage the neurons located in the vulnerable hippocampus CA1 areas. Clinically, neurological injury after CA contributes to death in most patients. Mastoparan-M extracted from Vespa magnifica (Smith) can be used to treat major neurological disorders. Hence, this study aimed to assess the effects of Mastoparan-M on GCI. Materials and Methods: To evaluate the neurotoxicity and neuroprotective effect of Mastoparan-M, the CCK8 and Annexin V-FITC/PI apoptosis assays were first performed in hippocampal HT22 neuronal cells in vitro. Then, Pulsinelli’s 4-vascular occlusion model was constructed in rats. After treatment with Mastoparan-M (0.05, 0.1, and 0.2 mg/kg, IP) for 3 or 7 days, behavioral tests, H&E staining or Nissl staining, immunohistochemistry, and ELISA were employed to investigate neuroprotective effects of Mastoparan-M on GCI in rats.Results: In vitro, the growth of HT22 neuronal cells was restrained at concentrations of 30-300 µg/ml (at 24 hr, IC50=105.2 µg/ml; at 48 hr, IC50=46.81 µg/ml), and Mastoparan-M treatment (0.1,1 and 5 µg/ml) restrained apoptosis. In vivo, Mastoparan-M improved neurocognitive function and neuronal loss in the hippocampal CA1 area of rats. In addition, these effects were associated with the prevention of neuroinflammation, oxidative stress, and apoptosis. Conclusion: Mastoparan-M acts as a neuroprotective agent to alleviate neuronal death in rats.

Keywords