Journal of Diabetes Investigation (Jun 2024)

Performance of different machine learning algorithms in identifying undiagnosed diabetes based on nonlaboratory parameters and the influence of muscle strength: A cross‐sectional study

  • Ying Xu,
  • Shanhu Qiu,
  • Jinli Ye,
  • Dan Chen,
  • Donglei Wang,
  • Xiaoying Zhou,
  • Zilin Sun

DOI
https://doi.org/10.1111/jdi.14166
Journal volume & issue
Vol. 15, no. 6
pp. 743 – 750

Abstract

Read online

Abstract Aims/Introduction Machine learning algorithms based on the artificial neural network (ANN), support vector machine, naive Bayesian or logistic regression model are commonly used to identify diabetes. This study investigated which approach performed the best and whether muscle strength provided any incremental benefit in identifying undiagnosed diabetes in Chinese adults. Methods This cross‐sectional study enrolled 4,482 eligible participants from eight provinces in China, who were randomly divided into the training dataset (n = 3,586) and the testing dataset (n = 896). Muscle strength was assessed by handgrip strength and the number of chair stands in the 30‐s chair stand test. An oral glucose tolerance test was used to ascertain undiagnosed diabetes. The areas under the curve (AUCs) were calculated accordingly and compared with each other. Results Of the included participants, 233 had newly diagnosed diabetes. All the four machine learning algorithms, which were developed based on nonlaboratory parameters, showed acceptable discriminative ability in identifying undiagnosed diabetes (all AUCs >0.70), with the ANN approach performing the best (AUC 0.806). Adding handgrip strength or the 30‐s chair stand test to this approach did not increase the AUC further (P = 0.39 and 0.26, respectively). Furthermore, compared with the New Chinese Diabetes Risk Score, the ANN approach showed a larger AUC in identifying undiagnosed diabetes (Pcomparison < 0.01), regardless of the addition of handgrip strength or the 30‐s chair stand test. Conclusions The ANN approach performed the best in identifying undiagnosed diabetes in Chinese adults; however, the addition of muscle strength might not improve its efficacy.

Keywords