Materials Today Bio (Apr 2023)

Engineered living materials grown from programmable Aspergillus niger mycelial pellets

  • Ke Li,
  • Zhen Wei,
  • Jianyao Jia,
  • Qing Xu,
  • Hao Liu,
  • Chao Zhong,
  • He Huang

Journal volume & issue
Vol. 19
p. 100545

Abstract

Read online

The development of engineered living materials (ELMs) has recently attracted significant attention from researchers across multiple disciplines. Fungi-derived ELMs represent a new type of macroscale, cost-effective, environmentally sustainable materials. However, current fungi-based ELMs either have to undergo a final process to heat-kill the living cells or rely on the co-culture with a model organism for functional modification, which hinders the engineerability and versatility of these materials. In this study, we report a new type of ELMs – grown from programmable Aspergillus niger mycelial pellets – by a simple filtration step under ambient conditions. We demonstrate that A. Niger pellets can provide sufficient cohesion to maintain large-area self-supporting structures even under low pH conditions. Subsequently, by tuning the inducible expression of genes involved in melanin biosynthesis, we verified the fabrication of self-supporting living membrane materials with tunable colors in response to xylose concentration in the surroundings, which can be further explored as a potential biosensor for detecting xylose level in industrial wastewater. Notably, the living materials remain alive, self-regenerative, and functional even after 3-month storage. Thus, beyond reporting a new engineerable fungi chassis for constructing ELMs, our study provides new opportunities for developing bulk living materials for real-world applications such as the production of fabrics, packaging materials, and biosensors.

Keywords