PLoS ONE (Jan 2018)
Activatable fluorescence detection of epidermal growth factor receptor positive mediastinal lymph nodes in murine lung cancer model.
Abstract
It is important to detect mediastinal lymph node metastases in patients with lung cancer to improve outcomes, and it is possible that activatable fluorescence imaging with indocyanine green (ICG) can help visualize metastatic lymph nodes. Therefore, we investigated the feasibility of applying this method to mediastinal lymph node metastases in an epidermal growth factor receptor (EGFR)-positive squamous cell carcinoma of the lung. Tumors were formed by injecting H226 (EGFR-positive) and H520 (EGFR-negative) cell lines directly in the lung parenchyma of five mice each. When computed tomography revealed tumors exceeding 8 mm at their longest or atelectasis that occupied more than half of lateral lung fields, a panitumumab (Pan)-ICG conjugate was injected in the tail vein (50 μg/100 μL). The mice were then sacrificed 48 hours after injection and their chests were opened for fluorescent imaging acquisition. Lymph node metastases with the five highest fluorescent signal intensities per mouse were chosen for statistical analysis of the average signal ratios against the liver. Regarding the quenching capacity, the Pan-ICG conjugate had almost no fluorescence in phosphate-buffered saline, but there was an approximate 61.8-fold increase in vitro after treatment with 1% sodium dodecyl sulfate. Both the fluorescent microscopy and the flow cytometry showed specific binding between the conjugate and H226, but almost no specific binding with H520. The EGFR-positive mediastinal lymph node metastases showed significantly higher average fluorescence signal ratios than the EGFR-negative ones (n = 25 per group) 48 hours after conjugate administration (70.1% ± 4.5% vs. 13.3% ± 1.8%; p < 0.05). Thus, activatable fluorescence imaging using the Pan-ICG conjugate detected EGFR-positive mediastinal lymph node metastases with high specificity.