Journal of Advanced Transportation (Jan 2024)
Optimization Design of W-Beam-Modified Guardrail Structure Based on the RBF Model and Anticrossing Consideration
Abstract
The frequent occurrence of secondary traffic accidents, characterized by vehicles losing control and straying into opposing lanes on highways, has emerged as a pressing concern. To address this issue, attention has been focused on the pivotal role of median guardrails as safety barriers. While conventional guardrails have effectively hindered vehicles from veering off course, mitigating accident severity, they are now inadequate in meeting the heightened protective standards necessitated by the surge in truck traffic and advancements in vehicle capabilities. To evaluate and enhance the protective capabilities of guardrails, this research employs a vehicle finite element (FE) model in conjunction with a W-beam guardrail system. Collision trajectories, acceleration, and displacement metrics were analyzed to compare the effectiveness of three improved guardrail designs in preventing crossing in the event of a runaway truck. Furthermore, based on the design of the retrofitted guardrail, the optimization of the structural parameters was carried out by a multiobjective optimization method using radial basis function (RBF) and NSGA-II algorithms with the size of the guardrail as the design variable. The collision simulation comparisons reveal that the double W-beam arch-reinforced guardrail surpasses both the double W-beam and the arch-reinforced guardrail regarding protective performance. Notably, the double W-beam design offers a viable option for disposing of obsolete guardrails postdemolition. The optimized design underscores that optimal structural protection is achieved when meticulously adjusting the thickness of the upper girder plate and the arch to precise dimensions. This refined guardrail system enhances safety and achieves material efficiency, utilizing less steel in its construction. By elucidating effective design modifications and the determination of optimal structural dimensions, this study provides its ideas for safer roads and more efficient infrastructure development.