Applied Sciences (Feb 2020)

Performance Analysis of a Hybrid Electric Vehicle with Multiple Converter Configuration

  • Josefa Morales-Morales,
  • Miguel A. Rivera-Cruz,
  • Pedro Cruz-Alcantar,
  • Horacio Bautista Santos,
  • Ilse Cervantes-Camacho,
  • Vladimir A. Reyes Herrera

DOI
https://doi.org/10.3390/app10031074
Journal volume & issue
Vol. 10, no. 3
p. 1074

Abstract

Read online

The use of electric vehicles and their various configurations is seen as a major alternative in efforts towards reducing pollutant emissions from motor vehicles that continue to use fossil fuels. Electric transport technology presents more efficient means of energy conversion in vehicles: electric (EV), hybrid (VH), and hybrid electric (HEV) vehicles. For example, the energy storage system in the latter can be made up of ultracapacitors (UCs), batteries (Bs), and fuel cells. This work focuses on HEVs powered by batteries and ultracapacitors. In particular, the multiple converter configuration (C-CM) for the HEV powertrain system is analyzed using electric models of the vehicle powertrain components. To analyze the multiple converter configuration, parameters of a vehicle taken from the literature and the electrical model of the configuration were developed. With the above, the proposed configuration was evaluated before driving cycles (CITY II and ECE) and the configuration performance was compared with respect to other configurations. In the C-CM model, limitations in the choice of the number of Bs and UCs were observed in the powertrain depending on the maximum power of both energy sources and vehicle load demand. The results show that more energy is extracted from the batteries in the ECE cycle than in the CITY taking into account that the batteries are used as the main power source. C-CM results compared to other configurations show that energy extracted from batteries in the CITY is the same across all configurations. While energy consumption is lower in the ECE, C-CM results were not very significant compared to other configurations. However, the C-MC has the advantage of having better power flow control due to having two converters, thus improving HEV safety.

Keywords