Heliyon (Nov 2024)

SHANK2-AS3: A potential biomarker for Parkinson's disease and its role in neuronal apoptosis via NF-κB signaling in SH-SY5Y cells

  • Qiong Huang,
  • Dani Qin,
  • Chunyan Chen,
  • Yu Kang,
  • Haocong Chen,
  • Min Xu,
  • Rao Fu,
  • Xiaohua Dong

Journal volume & issue
Vol. 10, no. 21
p. e38822

Abstract

Read online

Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily driven by the degeneration of dopaminergic neurons, manifesting as hallmark symptoms such as muscle rigidity, tremors, and motor dysfunction, all of which severely compromise patients' quality of life. Increasing evidence highlights the critical role of long non-coding RNAs (lncRNAs) in PD pathogenesis. However, the specific involvement of SHANK2-AS3 in PD remains unclear. By reanalyzing the dysregulated lncRNAs from the GSE22491 dataset, we identified a significant upregulation of SHANK2-AS3 in PD patients compared to healthy controls. This finding was further validated in a new cohort of PD patients, where SHANK2-AS3 expression was notably elevated in peripheral blood samples. Additionally, we observed a marked increase in SHANK2-AS3 expression in MPTP-treated SH-SY5Y cells, a commonly used in vitro PD model. Functional assays demonstrated that SHANK2-AS3 knockdown attenuated MPTP-induced apoptosis, reduced reactive oxygen species (ROS) accumulation, and improved mitochondrial function. In contrast, SHANK2-AS3 overexpression exacerbated neuronal apoptosis. RNA sequencing and Western blot analyses revealed that the NF-κB signaling pathway is involved in SHANK2-AS3-mediated neuronal apoptosis. In summary, our findings suggest that SHANK2-AS3 plays a critical role in PD pathogenesis and represents a potential therapeutic target for mitigating neuronal damage in PD.

Keywords